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Propagation of waves along the magnetic field in a 
two-component warm plasma 
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Department of Physics, University of Rajasthan, Jaipur, India 
MS. yeceiced 5th Noeember 1969 

Abstract. Wave propagation along the magnetic field in a two-component 
warm plasma having arbitrary mass ratio has been investigated with the help 
of moment equations. The equilibrium pressure has been assumed to be iso- 
tropic. The  full pressure tensor equation (neglecting heat flow tensor) has 
been used and the effect of momentum and pressure relaxation mechanisms 
has been included in the analysis. The dispersion relations for longitudinal 
and transverse waves propagating along the magnetic field have been derived 
and discussed in detail. I t  has been found that the pressure relaxation mechan- 
ism contributes significantly in the damping of the longitudinal and low- 
frequency transverse waves. The effect of thermal motion on transverse 
waves has also been discussed. 

1. Introduction 
Considerable importance is attached to the studies of wave propagation in plasmas 

because of the extensive applications. Several investigations (Bernstein and Trehan 
1960, Tanenbaum 1961, Pai 1962, Sharma 1966) using the macroscopic or multi-fluid 
approach have been reported. These treatments have used energy transport equations 
implying that an isotropic pressure is maintained in the system throughout the process 
of wave propagation. This implicitly assumes infinite self-relaxation frequencies for 
the component fluids. This assumption is not very much justified for a plasma 
particularly at high frequencies of wave propagation. It has been shown by Sharma 
(1969) that the perturbed pressure tensor shows a marked deviation from the isotropic 
nature when the pressure relaxation frequency is less than or comparable with the 
propagation frequency of the wave. In  plasmas the collision frequencies are usually 
smaller than the plasma frequency. Therefore, if the propagation frequency is higher 
than the plasma frequency, the pressure can no longer be assumed to remain isotropic 
throughout the process of wave propagation, i.e. there is a small but finite contribu- 
tion from the off-diagonal terms of the perturbed pressure tensor. The effects of 
relaxation phenomena on wave motion in a plasma have also been reported (Liboff 
1962, Sharma 1966). However, these treatments have assumed a scalar pressure and 
hence their dispersion relations of the transverse waves propagating along the magnetic 
field are completely independent of the thermal motions of the particles. However, 
the gradients of the off-diagonal terms of the perturbed pressure tensor contribute 
to the thermal effects in the propagation of these transverse waves. 

In  a previous investigation Sharma (1969) has examined wave propagation in a 
warm one-component plasma using the pressure tensor equation. There he has shown 
that the results obtained using this approach are in close agreement with those ob- 
tained by kinetic treatment. 

In  the present investigation we have examined wave propagation in a two- 
component plasma using the first three moment equations for each of the component 
fluids. The  effects of momentum and pressure relaxation mechanisms have been 
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properly included in the analysis through effective relaxation terms. The effect of 
thermal motion and collisions on the longitudinal and transverse wave motions has 
been investigated in detail; the mass ratio of the two kinds of particles has been 
assumed to be arbitrary. The  dispersion relations have been discussed for several 
limiting cases of interest. The  validity of the moment approach and neglect of 
pressure tensor has also been examined in detail by Sachs (1965). 

2. Basic equations 
We wish to consider small-amplitude wave motions in a two-component un- 

bounded stationary plasma system embedded in a uniform external magnetic field 
Bo. The system of equations used consists of the first three moments of the Boltzmann 
equation for two-component fluids and Maxwell’s equations governing the elec- 
tromagnetic fields. The  first three moment equations for the number density, 
momentum, and pressure tensor of the two fluids are as follows: 

dNe a 
- + -((Neuje) = 0 
dt a x ,  

dN‘ 2 
__ + -- ( N i z l ; )  = 0 
dt axj 

duj’ 1 8pjki e 
- +  -vie(Zl,i - U 3 e )  
dt Nimi ax, m‘ C 

= - I . ’ ie’(Pjki-Pjke)  -vi(Pjki+ &,,pi)* 
Maxwell’s equations are 

?El 1 %B, 
Ej, l - -  + -- = 0 

%x, c at 
i3Bl 1 BE, 477 

E j k - 1 7  = - - + -- eN(u?. - zije). 
ox, c %t c 

I n  the above equations, N ,  m are respectively the number density and mass of electrons 
or ions as indicated by the superscript, and - e  is the electronic charge. tij and P j k  
are the j t h  component of the fluid velocity and jkth component of the pressure tensor, 
respectively, for electrons or ions. E j  and B j  represent the j th  components of electric 
and magnetic fields, respectively. vei and v,.’ refer to the effective collision frequencies 
for the momentum and pressure relaxation of electrons due to collisions with the ions. 
ve is the effective self-collision frequency of electrons for the pressure relaxation. 
p is the scalar pressure and is equal to + trace of the pressure tensor. Sjk and eiiil 
are, respectively, the Kronecker and the Levi-Civita tensor densities. 



406 T. N. Bhatnagar and S. R. Sharma 

Equations (2.1) and (2.2) show that the momentum will be conserved if 

vei N i m l  mi 

vie Neme me 

since the medium is assumed to be quasi-neutral. The  pressure relaxation frequencies 
veil and vie' due to cross collisions are nearly equal and are of the order of vie for an 
electron-ion plasma. ve and v, are roughly the self-collision frequencies for the two 
components. If a two-component system having unequal masses for the two kinds 
of particles is deviated from thermal equilibrium, first the lighter component reaches 
equilibrium, and then the heavier component attains equilibrium, and finally the two 
components relax to each other. In  a plasma the effective collision frequencies are 
not very high, hence the possibility of anisotropic pressure of the component fluids 
cannot be ruled out. This leads to the inclusion of relaxation terms on the right-hand 
side of equations (2.5) and (2.6). The first relaxation term becomes effective when 
there exists a difference in the components of the pressure tensor of the two fluids. 
Taking the trace of equations (2.5) and (2.6) we may obtain the equation of transport 
of energy which has been discussed by Tanenbaum (1965). 

In  order to close the set of equations we have neglected the higher-order moments, 
namely the term containing the divergence of the heat flow tensor in equations (2.3) 
and (2.4). Since we are interested in only the first-order terms in uj ,  we have also 
neglected their products in the derivation of equations (2.3) and (2.4). Expressions 
for the effective collision frequencies vei etc. have been given by Burgers (1960) and 
by Shkarofsky (1963). 

- -_  - _ -  - 

3. Linearization and derivation of dispersion relations 
We consider small perturbations of the system about the equilibrium state which 

is defined by the number density no, the temperature To of the electron and ion 
fluids embedded in a uniform external magnetic field Bo taken along the x axis. 
After linearizing the above equations about the initial static state in the usual manner, 
we assume that the perturbed quantities vary as 

f = fo exp( ikx - iwt) (3.1) 

where k is the propagation vector along the x direction and w is the propagation 
frequency. 

The perturbed number density, electric and magnetic fields, are respectively 
given by 
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Using the above relations, the components of pressure tensor for the ion fluid are 
given as follows: 

1 
3 WZ 

P11’ = P22’ = - [ (3 Zw, + 5 ivlwe( w + ivel’) - 5 ivevel’vie’} 

x KPo1~31+ (3iZ- 5ve(w + ivle’)- 5v1w,}KPoe~l,’~~e] (3.6) 
(3.7) P12’ = P211 = 0 

. KPOevle’ p311 = pI31 = ___- [ ( X +  Y)iuIe+(X- Y)uze} 
2 X Y  

(3.8) 
KP,L 
2 X Y  

+ - ( ( a Y i b X ) u l i + ( a Y - b X ) i u z i )  

KPOevie’ 
2 X Y  

p , ;  = p2,i = -~ {( Y - X)ule + ( Y  + X)iuZe)  

(3.9) 
KP,’ 
2 X Y  

1 

+ - { ( b X -  a Y)iuli + (bX+ a Y)u,’} 

P 3 3 l  = Fz [{9iZ- 5viwe - 5ve(w + ivie’)}KPoevie’zi3e 

+ ( 9 w e Z  + 5 iv ioe(  w + iv,,’) - 5 i ~ , v ~ ~ ’ ~ ~ ~ ’ } K P ~ ’ u ~ ’ ]  

Z = w(w + id) 

(3.10) 
where 

w = w,wi +Vie’vei’ 

w, = w + iv, + ivei’ 

a = we-tL2, 

eB0 
Q e , ,  = - mesic 

wi = w + ivi + hief 

b = W e - Q e  

v’ = Vei‘ +vie’ 

X = (U, + fie)( wi - ai) + Uei’Vi,’ 

Y = ( w e  - ne)( wi + Qi) + veilvie’. 

Eliminating all the variables except zij, vie obtain two independent matrix equations, 
one of which is given by 

(3.11) 

{9weZ+ 5iviwe(w + iveif) - 5iv,vie’vei’} 
3wWZ 

cO2K2 
L,, = ___ - ~ {9ivei’Z- 5vewivei‘ - .5vivei’(w + bel’)} 

w2 3wWZ 

wpi*’ ci2K2 
L,, = - - ___ .[9iv,,’Z - 5viw,vie’ - 5v,vIe’( w + ;vie’)) 

w2 3wWZ 
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in which 

wPi*’ = wpi2 - iwvie 

The other equation is given by 

A,u,~+B,u,‘ = 0 
C i ~ ~ + e + D l i i , i  = 0 

(3.12) 

where U, = U, I iu, and the coefficients are 

i K2ci2vie’ c 8’- 
WR, 

in which 

4. Longitudinal waves 

field as obtained from equation (3.11) is given by 
The  dispersion relation of the longitudinal waves propagating along the magnetic 

* 2  

- (q2Be + ce2Bi)1 + ( (1 - 2-) w2 3 W Z )  = 0 (4.1) 
where 

A = 8 12 + 45 be( w + ivie’) + 4.5 ivi( w + ivei‘) - 25vevi 

Be = 9weZ+ .5iviwe(w + ivei’) - 5ivevie’vei’ 

Bi = 9wiZ  + 5 ivewi( w + ivte/) - 5 iviv,,’vle’ 

De = 9iZ-5wevi-.5v,(w+ivie’) 

D, = 9iZ-  5w,ve - 5vi(w + ivei’) 
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and 
wp*s = w p e “ 2 +  wpi*2, 

For mi --f CO, equation (4.1) reduces to the expression given by Sharma (1969). 
Xeglecting collisions it also reduces to the expression obtained previously by Bern- 
stein and Trehan (1960). 

For very low-frequency propagation, equation (4.1) gives : 

where v = v, +vi. 

phase velocity 
Equation (4.2) shows that as w + 0 the wave propagates undamped with 

For some higher frequencies the wave shows damping effects. It must be noted that 
for infinite self-relaxation frequencies the second term on the right-hand side of 
equation (4.2) goes to zero. However, this second term in equation (4.2) is of the 
order of w/ui and it gives rise to the damping of ionic sound waves. 

For high-frequency propagation, equation (4.1) can be much simplified. Re- 
taining only first-order terms in the collision frequencies we have 

3 K2ce2 wpe2 ivei ‘ 4ve + 9vei’ 
+ - - + i  -- - - 1-- 

w2 w2 w 9 0  

3K2ci2 wpi2 ivie 4vi + 9vie’ 
-- - 1-- + - + i  

U 2  U 2  w 9w 

(4.3) 

(4.4) 

Equation (4.3) describes longitudinal electron plasma waves for w > wpe and equa- 
tion (4.4) gives the dispersion relation for ion plasma waves for w > wpi.  It may be 
noted that the contribution of pressure relaxation terms is significant on the damping 
of both the waves. However, since vei’ 2: vie‘ 2: vie, it is seen that the damping due 
to pressure relaxation arising from cross collisions in an electron-ion plasma is 
significant only for the ion plasma waves. For electron plasma waves the contribution 
is very small as vel’ < vei. However, the damping caused by self collisions is signifi- 
cant for both the electron and ion plasma waves. The  fourth term on the right gives 
the contribution of the pressure relaxation mechanism to the damping of the waves. 
These terms will be absent in an analysis based on an energy (adiabatic) transport 
equation which assumes infinite self-relaxation frequency. 

5.  Transverse waves 

field as obtained from equation (3.12) is given by 
The dispersion relation of the transverse waves for propagation along the magnetic 

W W ~ ~ ~ ( K ~ A ~  - B,) 
w2 - K2~2 = -- (5.1) ivei(K2A, - B,) - K4ce2ci2 + K2A2 - B2 
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A ,  = ci2(2w + iv + 2iv’ + ( Qe - Q,)} 

B, = w ( l + m ) R ,  

A,  = Liz( we k Qe)( w k Qe) + ce2( U, T Q,)( w T Qi) 

B, ( w  TQi)(w k Qe)RA 
me 

m = -. 
m’ 

We shall consider equation (5.1) for the cases of low- and high-frequency propa- 

Considering the case of very low-frequency propagation; retaining up to the first- 
gation. 

order terms in w ,the dispersion relation (5.1) yields 

iviewc2 i(v + Zv‘) + (1 + 2) S,2w (5.2) 
W P i 2 A 2  g,(l +m) 

where 

QeQiC2 

wpe2 + wpi2 
A2 = 

g , = vevi + vlvei’ + vevle’ iQevl iQevie’ 

f iQive k &?,vel’ + QeRi. 

I t  is seen that as w --f 0 the wave propagates undamped with a phase velocity 

which tends to the AlfvCn speed if A < c. However, as the frequency rises, disper- 
sion effects come into play, as is indicated by the third and fourth terms on the right 
of equation (5.2). It must be remembered that the thermal corrections to this phase 
velocity can be estimated only by using the pressure tensor equation, because the 
fourth term will not appear if we use the energy transport equations instead of the 
pressure tensor equation. It is also seen that these dispersion effects will be absent 
if we have a plasma in which the masses of the two species are equal. 

At finite frequencies w < w p i  the wave is damped as indicated by the last two 
terms, the first of which is due to the momentum relaxation mechanisms and the 
second is due to the pressure relaxation mechanism. 

The ratio of the last two terms of equation (5.2) is given by 

(5.4) Fifth term %?g.(l +m) ,  - -- - - 
Sixth term ( ~ + 2 1 ~ ’ ) S ~ ~ ( ( l  +m)wp12+mQeQ,}’ 
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Retaining only the leading terms, we approximate g, N vevi + QeQi. Assuming 
(1 + m)wPi2 B mQ,Qi 9 v,vi we find 

Fifth term Bo2/4n Magnetic pressure 

Sixth term n,KT, Thermal pressure 
- _-=- (5.5) 

Thus we see that the fifth term contributes more or less than the sixth term 
according as the magnetic pressure is larger or smaller than the thermal pressure. 

If, however, we assume ai2 9 wpi2(1+m) 9 ”,vi, then the fifth term is larger 
than the sixth term indicating that the damping due to the momentum relaxation 
mechanism is larger than that due to the pressure relaxation mechanism. 

This additional damping term arises from the contribution of the off-diagonal 
terms of the perturbed pressure tensor. It may also be seen that, for finite w 
( w  < Qi), the phase velocities are different for the two modes of wave propagation. 
The  damping is, however, only very slightly different for the two cases. For higher 
frequency, as w -+ Q,, the resonance effects become important and collisions may 
also play a significant role in the vicinity of the resonant frequency. However, at 
w E Q, our macroscopic treatment is no longer valid. 

Assuming K2ce2/w2 < 1 and neglecting collisions, we obtain from equation (5.1) 
the value of refractive index n as given by 

where 

a’ = w f Q,, b‘ = w TQi ,  s,2 = c,  2 1  I C  2. 

Equation (5.6) holds good for propagation frequencies away from the resonance. 
The ratio of the two terms in braces in equation (5.6) is given by 

First term 
Second term 

( w  f Q,)( w 3 Qi)(2w 5 Q, F Qi)m2 
W (  1 + m)a(mw2 + QF) (5.7) - - 

Considering relation (5.7) for several cases of the propagation frequencies we have 

First term 2m 
Second term (I  + m)z 

N- - for w 9 Q,, Qi 

Thus the contribution of the first term is larger or smaller than the second term 
according as the propagation frequency is much lower or higher than the cyclotron 
frequencies, thereby increasing or decreasing slightly the value of the refractive index. 

Finally, we examine equation (5.1) for high-frequency propagation. We assume 
that the collision frequencies are much smaller than the propagation frequency, so 
that their products can be neglected compared with w 2 ,  We also assume that 
K2c,,i2 /w2 4 1 and neglect the terms containing their products or their product with 

A6 



412 T.  N. Bhatiiagar and S. R. Shauna 

collision frequencies. Equation (5.1) can be approximated as 

u‘2ci2 + btacea ci2(a’ + b’) ivCiw( 1 + m) 
= I--- l+K2-  --pi- 1 .  (5.9) 

a’b’ [ ( a’2b’2 wa’b’( 1 + m) a’b’ 

Equation (5.9) holds when the effect on the refractive index of collisions and thermal 
motion is small and the propagation frequency is not in the neighbourhood of the 
electron or ion cyclotron frequencies. It is seen that the contribution of the pressure 
relaxation mechanism to the damping is absent in the first order. This agrees with 
the previous conclusion of Sharma (1966) and more recent calculations of Ogasawara 
(1969). Equation ( 5 .  l), under appropriate approximations, is in close agreement with 
the dispersion relation obtained by Sachs (1965). 

6. Conclusions 
Observing that the contribution of the off-diagonal terms of the pressure tensor 

may be of significance, in this paper we have proposed a model for a two-component 
plasma in which the effect of the pressure relaxation mechanism has been included. 
Wave propagation in a two-component plasma having arbitrary mass ratio has been 
examined with the help of these equations. It is found that the pressure relaxation 
mechanism operating through self or cross collisions contributes significantly to the 
damping of the longitudinal and low-frequency transverse waves. Another contri- 
bution of the pressure tensor equation is to supply thermal correction terms for the 
refractive index for the transverse waves. I t  may, however, be noted that the correc- 
tions are of the order of ce2/c2 and, in a rigorous analysis, relativistic equations must 
be used for the proper assessment of these corrections. 
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